Boolean Expression Optimizer
Simplify boolean expressions using algebraic laws like De Morgan's, remove double negations, and optimize logic for different programming languages.
Enter a boolean expression above to see the optimized result
Common Examples
!$a && !$b
De Morgan's Law - AND of negations
!$a || !$b
De Morgan's Law - OR of negations
!!$variable
Double negation removal
(($a && $b))
Redundant parentheses
$x && true
Identity with true
$y || false
Identity with false
Boolean Expression Optimization Guide
What is Boolean Expression Optimization?
Boolean expression optimization is the process of simplifying logical expressions using mathematical laws and rules of boolean algebra. This process helps:
- Reduce code complexity and improve readability
- Minimize computational overhead in conditional statements
- Identify logical redundancies and potential errors
- Create more maintainable and efficient code
Optimization Rules
De Morgan's Laws
!a && !b
↓
!(a || b)
!a || !b
↓
!(a && b)
Double Negation
!!a
↓
a
Two negations cancel each other out
Identity Laws
a && true → a
a || false → a
a && false → false
a || true → true
Redundant Parentheses
(a)
↓
a
((a))
↓
(a)
Language Support
PHP
AND: &&
OR: ||
NOT: !
Variables: $variable
JavaScript
AND: &&
OR: ||
NOT: !
Variables: variable
Python
AND: and
OR: or
NOT: not
Booleans: True, False
Common Use Cases
Code Review & Refactoring
- • Identify unnecessarily complex conditional logic
- • Simplify nested if statements
- • Reduce cognitive load for maintainers
- • Find potential logical errors
Performance Optimization
- • Minimize boolean operations in loops
- • Optimize database query conditions
- • Reduce computational complexity
- • Improve code execution speed