Boolean Expression Optimizer

Simplify boolean expressions using algebraic laws like De Morgan's, remove double negations, and optimize logic for different programming languages.

Enter a boolean expression above to see the optimized result

Common Examples

!$a && !$b
De Morgan's Law - AND of negations
!$a || !$b
De Morgan's Law - OR of negations
!!$variable
Double negation removal
(($a && $b))
Redundant parentheses
$x && true
Identity with true
$y || false
Identity with false

Boolean Expression Optimization Guide

What is Boolean Expression Optimization?

Boolean expression optimization is the process of simplifying logical expressions using mathematical laws and rules of boolean algebra. This process helps:

  • Reduce code complexity and improve readability
  • Minimize computational overhead in conditional statements
  • Identify logical redundancies and potential errors
  • Create more maintainable and efficient code

Optimization Rules

De Morgan's Laws

!a && !b
!(a || b)
!a || !b
!(a && b)

Double Negation

!!a
a

Two negations cancel each other out

Identity Laws

a && true → a
a || false → a
a && false → false
a || true → true

Redundant Parentheses

(a)
a
((a))
(a)

Language Support

PHP

AND: &&
OR: ||
NOT: !
Variables: $variable

JavaScript

AND: &&
OR: ||
NOT: !
Variables: variable

Python

AND: and
OR: or
NOT: not
Booleans: True, False

Common Use Cases

Code Review & Refactoring

  • • Identify unnecessarily complex conditional logic
  • • Simplify nested if statements
  • • Reduce cognitive load for maintainers
  • • Find potential logical errors

Performance Optimization

  • • Minimize boolean operations in loops
  • • Optimize database query conditions
  • • Reduce computational complexity
  • • Improve code execution speed